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According to the speckle feature in Optical coherence tomography (OCT), images with speckle
indicate not only noise but also signals, an improved wavelet hierarchical threshold ¯lter
(IWHTF) method is proposed. At ¯rst, a modi¯ed hierarchical threshold-selected algorithm is
used to prevent signals from being removed by assessing suitable thresholds for di®erent noise
levels. Then, an improved wavelet threshold function based on two traditional threshold func-
tions is proposed to trade-o® between speckle removing and sharpness degradation. The
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de-noising results of an OCT ¯nger skin image shows that the IWHTF method obtains better
objective evaluation metrics and visual image quality improvement. When � ¼ 0:2, � ¼ 5:0 and
K ¼ 1:2, the improved method can achieve 9.58 dB improvement in signal-to-noise ratio, with
sharpness degraded by 3.81%.

Keywords: Optical coherence tomography; wavelets; speckle.

1. Introduction

Optical coherence tomography (OCT) is a promising
optical imaging technique widely used in ophthal-
mology and cardiology, due to its advantages in-
cluding non-invasive, high speed, high resolution and
three-dimensional imaging.1–3 The quality of images
is vital for OCT. In reality, since OCT is based on
low-coherence interferometry,4–6 it inevitably brings
speckle noise to OCT images. Speckle noise degrades
OCT images' quality and makes the details of the
image blurry.7 For better understanding the speckle
noise in OCT, many groups have done signi¯cant
research on its statistics and properties.8–11

Many methods have been proposed to attenuate
the speckle noise in OCT images, these methods can
be divided into two parts: hardware and software
methods. Hardware methods are optical approaches
that physically remove speckle noise, including fre-
quency12,13 and spatial compounding,14–18 which can
signi¯cantly improve signal-to-noise ratio of OCT
images. But these methods would increase system
complexity, meanwhile decrease imaging speed and
spatial resolution.12,16 Software approaches based on
post-processing ¯ltering techniques, including adap-
tive Wiener ¯ltering,6 curvelet domain ¯ltering,19,20

contourlet domain ¯ltering,21 Csiszars I-divergence
regularization,22 interval type II fuzzy system,23,24

regularized image restoration based on speckle char-
acteristics,25 compressed sensing (CS) reconstruc-
tion,26–28 sparse reconstruction,29–32 and wavelet
domain ¯ltering33–37 can reduce speckle noise by ¯l-
tering in di®erent transform domain. Wavelet do-
main ¯ltering is widely accepted as a promising
method in de-noising for OCT images.

The fundamental principle of wavelet threshold
algorithm is described as follows: An estimated
wavelet threshold is used to decide whether the
wavelet coe±cients are noise or not. Large ampli-
tude wavelet coe±cients are regarded as the carrier
of useful information, while small amplitude wavelet
coe±cients are more likely to be the carrier of
noise.36 Conventional wavelet de-noising algorithm

assumes that the level of noise intensity is the same
at di®erent sub-bands, so this algorithm uses a
global and constant threshold for di®erent wavelet
sub-bands. In fact, the speckle noise pattern is un-
correlated and di®erent in OCT images33 and
speckle noise can also be the carrier of useful infor-
mation.38 In order to protect useful information
from being removed in wavelet ¯ltering, it is im-
portant to evaluate suitable thresholds for di®erent
wavelet sub-bands. Earlier, hard threshold and soft
threshold function used in noise reduction would
cause ringing e®ects39 and Gibbs phenomenon21,33

due to discontinuity and constant deviation in these
two functions. So, it is also important to improve
the wavelet threshold function.

In this paper, we propose a modi¯ed hierarchical
threshold-selected algorithm and an improved
wavelet threshold function based on the wavelet
threshold de-noising algorithm proposed by Donoho
and Johnstone.40 The modi¯ed hierarchical thresh-
old-selected (MHTS) algorithm can provide di®er-
ent and suitable wavelet thresholds for di®erent
wavelet decomposition levels. The improved wave-
let threshold function (IWTF) has the ability to
balance speckle removal and sharpness degradation.
The combination of these two improvements can
not only increase the contrast and signal-to-noise
ratio (SNR) of OCT images, but also preserve the
feature of the structural image.

2. Theory and Principle

2.1. Modi¯ed hierarchical threshold-

selected (MHTS) algorithm

The basis theory of wavelet threshold method is
described as follows: Because of the low correlation
or uncorrelation between the noise and useful sig-
nals, wavelet transform makes useful signals dis-
tribute in high frequency sub-bands, meanwhile the
noise signals distribute in low frequency sub-bands.
After wavelet decomposition, useful signals con-
centrate on larger amplitude wavelet coe±cients
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and noise signals concentrate on smaller amplitude
wavelet coe±cients.36 For OCT images, noise in-
tensity is di®erent at di®erent spatial or frequency
positions, so the selected wavelet threshold for each
decomposition level should also be di®erent. In
conventional wavelet threshold de-nosing method,
an unchanged global threshold is assessed and then
used for each decomposition level. This kind of ir-
rationally selected threshold could cause sharpness
degradation and images' vagueness by removing
some useful information during the de-noise process.
Therefore, it is important to modify the threshold-
selected method to achieve suitable threshold for
di®erent decomposition levels.

In this paper, a hierarchical threshold is put
forward based on the conventional global threshold
proposed by Donoho. (As shown in Eqs. (1) and
(2).) The conventional global threshold (T) pro-
posed by Donoho is de¯ned as follows:

� ¼ medianðjHH1jÞ
0:6745

; ð1Þ

T ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnN

p
; ð2Þ

where � is the standard deviation of noisy wavelet
coe±cient, HH1 is the diagonal high frequency
coe±cient at the decomposition level 1, N is the
length of the signal. In practice, at high level of
wavelet decomposition, wavelet coe±cients of useful
signal become larger and the noisy wavelet coe±-
cients become smaller. If the selected global
threshold is too small, it would excessively process
wavelet coe±cients of useful information especially
in high wavelet decomposition levels, which could
cause sharpness degradation. If the selected global
threshold is too large, it would retain some speckle
noise in OCT images after the ¯ltering process. In
order to trade-o® the problem that thresholds are
either too large or too small, a hierarchical thresh-
old-selected method (as shown in Eqs. (3) and (4))
is present based on the global threshold method

Lj ¼ 1þ arctan
j

10
; ð3Þ

Tj ¼ K
medianðjHH1jÞ

0:6754

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnNj

p
Lj

; ð4Þ

where j is the decomposition level, Tj is the
threshold at j level, HHj is diagonal high frequency
coe±cient, Nj is the length of HHj. Compared to
the original threshold selected method, the modi¯ed
method has two advantages: (1) Divided by Lj, the

value of which is always larger than 1. With the
increasing of level j, Lj becomes larger. So, the as-
sessment thresholds Tj become smaller, which meets
the condition that noisy wavelet coe±cients are
smaller at higher decomposition levels. (2) An al-
terable parameter K is used to preserve some useful
information from being unnecessarily ¯ltered.

2.2. Improved wavelet threshold
function (IWTF)

Wavelet threshold function is used to remove the
noise mainly from low frequency wavelet coe±-
cients. Based on two conventional threshold func-
tions: hard threshold function and soft threshold
function, an improved wavelet threshold function
is proposed to remedy the defects, such as ringing
e®ect and Gibbs phenomena,21,33,39 of these two
conventional functions.

The hard threshold function is shown in Eq. (5)
as

�wj;k ¼ wj;k; if jwj;kj � T;
0; if jwj;kj < 0;

�
ð5Þ

where �wj;k is the wavelet coe±cient after threshold
processing, wj;k is the original wavelet coe±cient, j
is the wavelet decomposition level, k is the spatial
coordinate, T is the threshold. The discontinuities
at threshold �T could cause ringing e®ect and
pseudo-Gibbs phenomena, it would obscure edge
details of OCT images. The blue curve in Fig. 1(a)
shows the plot of the hard threshold function
(assuming T is 40).

The soft threshold function is shown in Eq. (6):

�wj;k ¼ sgnðwj;kÞðjwj;kj � T Þ; if jwj;kj � T ;
0; if jwj;kj < T ;

�
ð6Þ

where sgn () is a function: if the wavelet coe±cient
wj;k is larger than zero, then it will become 1, oth-
erwise it will become �1. In soft threshold process,
since there is a constant deviation between the
original wavelet coe±cients and the processed
wavelet coe±cients, this deviation could decrease
contrast and smoothness of OCT images. The green
curve in Fig. 1(a) shows the plot of the soft
threshold function (assuming T is 40).

In order to overcome the discontinuities and
constant deviations coming from two conventional
threshold functions, a new improved threshold
function is presented based on a curvature function.

Improved wavelet hierarchical threshold ¯lter for OCT
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The de¯nition of this curvature function is as
follows:

y ¼ 2

�
arctanð�xÞ; � 2 R: ð7Þ

The variable x of the function can be any real
number on X-axis, the variable y can be any real
number between (�1, 1). This function is zero-
symmetric, and the degree of curvature can be ad-
justed by parameter �. Figure 1(b) shows the plot of
the modi¯ed curvature function when parameter �
are 0.1, 0.3, 0.5, 1, 2 and 5, respectively.

Based on the curvature function, a new threshold
function is de¯ned as follows

vj;k ¼ wj;k � T ; if wj;k � T ;
wj;k þ T ; if wj;k � �T ;

�
ð8Þ

�wj;k ¼

vj;k þ
2

�
arctan �

vj;k
T

�
þ sgnðwj;kÞ�

�
T ; if jwj;kj � T ;

2

�
arctanð�Þwj;k; if jwj;kj < T ;

0 < � < 1; � > 0

8>>>>>>><
>>>>>>>:

ð9Þ
where parameter � is used to realize di®erent degree
of shrinkage on high frequency coe±cients. In both
hard and soft threshold functions, for those wavelet
coe±cients, whose absolute value are smaller than
T , are totally regarded as noise and set to zero. This
will inevitably remove some useful information and
lead to detail de¯ciency.

In the new threshold function, the wavelet ¯l-
tering process would become more reasonable by

Fig. 1. Diagram of threshold functions. (a) Two conventional threshold functions: Hard (blue curve) and soft (green curve); (b)
modi¯ed curvature function; (c) the improved threshold function (when � is varied from 0.2 to 20); (d) zooming up of the area
pointed by black arrow in Fig. 1(c).
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introducing two parameters. For those with
jwj;kj < T , the wavelet coe±cients after threshold
process would be adjusted by choosing an appro-
priate parameter �, rather than setting to zero
in previous wavelet functions. For those with
jwj;kj > T , the degree of curvature is adjusted by
parameter �. When � is 0, the improved ¯ltering
process is equivalent to soft threshold function.
When � ! 1, the improved ¯ltering process is
equivalent to hard threshold function. Figure 1(c)
shows the diagram of improved threshold function
at di®erent degrees of curvature, parameter � is
0.2, 0.5, 1.0, 2.0, 5.0, 10.0 and 20.0, respectively
(assuming threshold T ¼ 40, parameter � is 0.2).
Figure 1(d) shows the zooming up of the area
pointed by black arrow in Fig. 1(c).

2.3. Procedure of improved wavelet
hierarchical threshold de-noising

As shown in Fig. 2, there are ¯ve basic procedures of
the wavelet-based hierarchical threshold de-noising
process.

(1) Logarithmically transform.33–36 The speckle
noise in OCT images is multiplicative noise.34

By taking the logarithmical transform of
fðx; yÞ, the nonlinear multiplicative noise could
be turned into additive noise. The noisy OCT
image fðx; yÞ is presented by Eq. (10) as

fðx; yÞ ¼ sðx; yÞ � nðx; yÞ; ð10Þ
where sðx; yÞ is useful signal, nðx; yÞ is noise
signal. Equation (11) is the logarithmical
transform of original OCT image, presented by

Eq. (10) as:

gðx; yÞ ¼ ln sðx; yÞ þ lnnðx; yÞ: ð11Þ
(2) Two-dimensional discrete wavelet transform

(2-D-DWT). The 2-D-DWT is used to decom-
pose the speckle noise into di®erent levels,
which are contained in di®erent amplitude
wavelet coe±cient wj;k on each layer.

(3) Wavelet thresholding ¯lter. A modi¯ed hierar-
chical threshold-selected algorithm and an im-
proved wavelet threshold function are used to
optimize the ¯lter process by adjusting three
parameters �, � and K from Eqs. (4) and (9).

(4) Two-dimensional inverse discrete wavelet
transform (2-D-IDWT). It is used to recon-
struct the logarithmic image with processed
wavelet coe±cient wj;k.

(5) Exponential transform. Turning the recon-
structed image into the noise-free image.

2.4. Image quality metrics parameters

Four metrics, including signal-to-noise ratio (SNR),
contrast-to-noise ratio (CNR), equivalent number
of looks (ENL) and XCOR, are used to assess the
image quality after ¯ltering process.25,33,39 Among
them, SNR is a global metric for the whole image
and calculated in linear scale, while CNR and ENL
are calculated as the average of several regions of
interest (ROI) of the OCT images and measured in
logarithmic scale.

The de¯nition of SNR33 is shown in Eq. (12),

SNRðdBÞ ¼ 10 log10
maxðI 2Þ

�2
n

� �
; ð12Þ

Fig. 2. Procedure of improved wavelet hierarchical threshold de-noising for OCT image.

Improved wavelet hierarchical threshold ¯lter for OCT
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where I is the pixel value of the image on linear
intensity scale, and �n is the noise standard devia-
tion of the whole image.

The de¯nition of CNR25 is shown in Eq. (13),

CNR ¼ 1

R

XR
r¼1

�r � �bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2

r þ �2
bÞ

q
0
B@

1
CA; ð13Þ

where R is the number of ROIs choosen from the
OCT images, �r is the mean pixel value and �r is the
pixel standard deviation in the rth ROI, �b and �b
are the mean pixel and standard deviation of the
background region of the image, respectively. The
CNR indicates the contrast between image feature
and an area of background noise.

The de¯nition of ENL25 is shown in Eq. (14),

ENL ¼ 1

H

XH
h¼1

�2
h

�2
h

 !
; ð14Þ

whereH is the number of ROIs, �h is the mean pixel
value and �h is the pixel standard deviation in the
h 0th ROI. The ENL indicates smoothness in areas
that should have a homogeneous appearance but
are corrupted by speckle.

The de¯nition of XCOR39 is shown in Eq. (15),

XCOR ¼
P

ði;jÞ Ibeforeði; jÞ � Iafterði; jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ði;jÞ Ibeforeði; jÞ2 �

P
ði;jÞ Iafterði; jÞ2

� �q ;

ð15Þ
where Ibeforeði; jÞ and Iafterði; jÞ are the intensity
value of each pixel of noisy OCT images and noise-
free images, respectively. The value of XCOR is
smaller than 1 and will approach 1 when the de-
noised images resembles the original image.

3. Experimental Results and Analysis

In order to demonstrate the e®ectiveness of the hi-
erarchical threshold-selected method and improved
wavelet threshold function, this technique is applied
to a human ¯nger skin image from a Swept-source
OCT. The image size is 1024*656 pixels. The
SSOCT utilizes a broadband swept source (Santec.
Inc, HSL-20, �0 ¼ 1310 nm, �� ¼ 107 nm) with
12�m axial resolution and 13�m transverse reso-
lutions. The wavelet decomposition level is 3 and
processing strategy is the db6 in Daubechies group.
This algorithm is realized in Matlab environment

with 320.9ms computation time for each 2D image
(1024*656 pixels). The computer we used has an
i7 processor. Five regions of interest (ROIs) are
marked out (shown in Fig. 6(a)) in original image,
that are used to calculate four metrics after the ¯l-
tering process. Region 1 is background noise region
used to estimate noisy level of the whole image. The
CNR and ENL are calculated on the average of four
ROIs from region 2 to 5 (marked out in the noisy
image).

Table 1 shows e®ect of parameter K in preserv-
ing some useful information from being excessively
¯ltered. A 3*3 Wiener ¯lter is applied to the image
as a comparison. As shown in Table 1, when
K � 0:8, the CNR and ENL of MHTS are signi¯-
cantly larger than that of Wiener ¯lter. The SNR of
MHES is larger than that of Wiener ¯lter whenK �
1:0 and smaller when K < 1:0. As for the XCOR,
the result is another way around. Although the
XCOR is decreased 0.15% to 0.35%, it is still im-
portant to get a suitableK in order to prevent some
signals from being removed. From Eqs. (3) and (4),
it is obvious that when K < 1, threshold T becomes
smaller; when K > 1, then threshold becomes big-
ger. By adjusting parameter K, meanwhile � and �
are constant at 0.2 and 5.0, respectively. As shown
in Fig. 3(b), the SNR increases maximum at 9.58 dB
with 3.81% sharpness degradation (when K is 1.2)
compared to the original image. Meanwhile, from
Fig. 3(a), CNR and ENL are also improved with
the increase of parameter K. It indicates speckles
are not always noisy, sometime they could also be
the carrier of signals.38 Appropriately increasing
threshold T could protect these signals from being
removed in wavelet ¯lter.

Table 1. Image quality metrics when K
varies from 0.7 to 1.3 (� ¼ 0:2, � ¼ 5:0).

Methods CNR ENL SNR XCOR

Original 1.94 13.21 59.54 1
Wiener 3.77 36.30 67.02 96.50%

MHTS (� ¼ 0:2, � ¼ 5:0)

K ¼ 0:7 3.65 35.14 65.32 96.96%
K ¼ 0:8 4.11 42.36 65.71 96.68%
K ¼ 0:9 4.54 49.56 66.71 96.48%
K ¼ 1:0 4.91 55.91 67.72 96.35%
K ¼ 1:1 5.20 60.51 68.56 96.26%
K ¼ 1:2 5.37 63.18 69.12 96.19%
K ¼ 1:3 5.48 64.84 68.67 96.15%

J. Cao et al.
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Table 2 shows e®ect of parameter � in trade-o®
between speckle removing and sharpness degrada-
tion (when � ¼ 5:0, K ¼ 1:2). With the decreasing
of parameter � from 0.5 to 0.0, the SNR has im-
proved from 6.15 dB to 11.02 dB compared to orig-
inal image, as well as showing prominent advance in
both CNR and ENL (as shown in Fig. 4(a)). But it
causes sharpness degradation from 2.32% to 5.19%.
Figure 4(b) shows the SNR improvement and
sharpness degradation for an SSOCT image, when
� is varied from 0.0 to 0.5. In order to balance the
SNR and XCOR, a suitable parameter � ¼ 0:2 is
selected, the improved wavelet method can achieve

(a) (b)

Fig. 3. Diagram of four metrics vs parameter K (when � ¼ 0:2, � ¼ 5:0). (a) Calculated CNR and ENL improvement of a SSOCT
image whenK varies from 0.7 to 1.3. (b) Calculated SNR increasing and sharpness degradation of the image whenK varies from 0.7
to 1.3.

(a) (b)

Fig. 4. Diagram of four metrics vs parameter � (when � ¼ 5:0,K ¼ 1:2). (a) Calculated CNR and ENL improvement of the image
when � varies from 0.0 to 0.5. (b) Calculated SNR increasing and sharpness degradation of the image when � varies from 0.0 to 0.5.

Table 2. Image quality metrics when � varies from
0.0 to 0.5 (� ¼ 5:0, K ¼ 1:2).

Methods CNR ENL SNR XCOR

Conventional wavelet threshold function (K ¼ 1:2)

Hard threshold 5.19 59.87 67.71 94.86%
Soft threshold 6.09 74.04 66.85 94.68%

Improved wavelet threshold (� ¼ 5:0, K ¼ 1:2)

� ¼ 0:0 5.81 68.58 70.56 94.81%
� ¼ 0:1 5.67 66.84 70.07 95.54%
� ¼ 0:2 5.37 63.18 69.12 96.19%
� ¼ 0:3 4.99 58.29 67.96 96.77%
� ¼ 0:4 4.62 53.07 66.79 97.26%
� ¼ 0:5 4.27 48.11 65.69 97.68%

Improved wavelet hierarchical threshold ¯lter for OCT

1850012-7

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
8.

11
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

U
A

Z
H

O
N

G
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 o

n 
09

/1
3/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



9.58 dB improvement in SNR, with sharpness de-
graded by 3.81%.

As it is shown in Table 3, when parameter �
varies from 0.1 to 5.0, SNR increases from 66.11 dB
to 69.12 dB and XCOR increases from 96.11% to
96.19%. But other two metrics (both CNR and
ENL) decrease. This kind of changing trend is more
visible from Fig. 5, both SNR and XCOR increase
at the cost of CNR and ENL decrease. It shows the
ability of parameter � in trade-o® between the in-
creasing of two metrics — SNR and XCOR, and the
decreasing of other two metrics — CNR and ENL.

It can be seen from the three tables that the
de-noising results of the improved wavelet method
is better than Wiener ¯lter, soft threshold and
hard threshold wavelet ¯lter. By adjusting the

parameters �, � and K, the improved threshold
method has successfully balanced speckle removal
and sharpness degradation, as well as protected the
balance between image quality improvement and
edge detail information. When � ¼ 0:2, � ¼ 5:0 and
K ¼ 1:2, the improved wavelet method can achieve
9.58 dB improvement in SNR, with sharpness de-
graded by 3.81%.

Figure 6 shows the comparison of an OCT ¯nger
image before and after di®erent ¯ltering processes.
Figure 6(a) is the original OCT image. Figure 6(e) is
the image after improved threshold wavelet ¯lter
(when � ¼ 0:2, � ¼ 5:0 and K ¼ 1:2). The noise-
free image in Fig. 6(e) shows the ability of the im-
proved wavelet method to reduce speckle noise in
OCT images. For comparison, the de-speckled
images by Wiener ¯ler, soft-threshold wavelet ¯lter
and hard–threshold wavelet ¯lter are also shown in
Figs. 6(b)–6(d), respectively. In order to improve
the visibility of the wavelet ¯lter e®ect, the 5th
ROI are zoomed up (shown in Figs. 6(f) and 6(g)).
Figure 6(f) is the zooming up from the 5th ROI from
the original noisy image. Figure 6(g) is the same
region after improved wavelet threshold ¯lter.
There are a lot of grains in Fig. 6(f), as a result of
the existence of speckle noise. While in Fig. 6(g), the
image becomes more smooth due to the speckle re-
ducing. The improved wavelet method is not only
better than those three ¯lters in aspect of speckle
reducing, but also capable in balance between image
quality improvement and edge details preserving.

Table 3. Image quality metrics when � varies from
0.1 to 5.0 (� ¼ 0:2, K ¼ 1:2).

Methods CNR ENL SNR XCOR

Conventional wavelet threshold function (K ¼ 1:2)

Hard threshold 5.19 59.87 67.71 94.86%
Soft threshold 6.09 74.04 66.85 94.68%

Improved wavelet threshold (� ¼ 0:2, K ¼ 1:2)

� ¼ 0:1 5.57 67.73 66.11 96.11%
� ¼ 0:3 5.56 67.44 66.69 96.12%
� ¼ 0:5 5.55 67.10 67.08 96.13%
� ¼ 1:0 5.52 66.51 67.59 96.15%
� ¼ 2:0 5.48 65.43 67.87 96.17%
� ¼ 5:0 5.37 63.18 69.12 96.19%

(a) (b)

Fig. 5. Diagram of four metrics vs parameter � (when � ¼ 0:2, K ¼ 1:2). (a) Calculated CNR and ENL decrease when � varies
from 0.1 to 5.0. (b) Calculated SNR and XCOR increase when � varies from 0.0 to 5.0.
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4. Conclusions

In OCT systems, the speckle is not only noise but
also the carrier of useful information. In this paper,
a modi¯ed hierarchical threshold-selected algorithm
is proposed to protect signals from being removed
by adjusting parameter K, which is helpful in
choosing suitable thresholds for di®erent noise level.
An improved wavelet threshold function is used to
trade-o® between speckle removal and sharpness
degradation. This improved threshold function has
good continuity and adaptability, parameters � and
� can be adjusted according to the actual feature of
the OCT images. Finally, when � ¼ 0:2, � ¼ 5:0
and K ¼ 1:2, the improved wavelet ¯lter can

achieve 9.58 dB improvement in SNR, with sharp-
ness degraded by 3.81%. The results of OCT images
show that the improved threshold ¯lter obtains
better objective evaluation metrics and better visual
discerniblity.

Except for OCT imaging, wavelet ¯lters have
already been applied to some other imaging sys-
tems, especially ultrasound imaging. In OCT
images, the speckle noise mainly comes from low-
coherence interferometry or the imaging system
itself. So, the improved wavelet we present in this
paper is suitable for most OCT images/samples and
its e®ectiveness is not limited to images with certain
characteristics.

Fig. 6. Comparison of di®erent de-noising methods for an OCT ¯nger skin image. (a) Noisy image with one background region and
four ROIs marked in black, (b) image after 3*3 Wiener ¯ler, (c) image after soft-threshold wavelet ¯lter, (d) image after hard-
threshold wavelet ¯lter, (e) image after improved threshold wavelet ¯lter, (f) zooming up of the 5th ROI from Fig. 6(a), (g) zooming
up of the same region from Fig. 6(e). Scale bar in Fig. 6(a) is 500�m.
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In this paper, the algorithm is realized in Matlab.
It may take more time if we transfer this algorithm
to Cþþ language. But we believe with the help of
graphics processing unit (GPU), we can accelerate
the ¯ltering process. It can be possible for real-time
2D or 3D OCT imaging.
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